
Chapter 1

Double And Triple Integrals

1.1 Integral Over An Interval

We start by reviewing integration theory of functions of a single variable.

Given an interval [a, b], a partition P on [a, b] is a collection of points {xj} satisfying
a = x0 < x1 < · · · < xn = b. The norm of the partition P , denoted by ‖P‖, is the
maximum of ∆xj = xj − xj−1, j = 1, · · · , n. It measures how refined the partition is. Let
f be a function defined on an interval [a, b]. The Riemann sum of f with respect to the
partition P is defined to be

R(f, P ) =
n∑
j=1

f(zj)∆xj ,

where the tag zj is an arbitrary point taken from the subinterval [xj−1, xj] and ∆xj =
xj − xj−1 is the length of the subinterval. In fact, the Riemann sum also depends on the
choice of tag points, but we simplify things by using the same notation.

The function f is called integrable if there exists a real number α such that for every
ε > 0, there is some δ > 0 so that

|R(f, P )− α| < ε, ∀P , ‖P‖ < δ .

Equivalently, f is integrable if for every sequence of partitions {Pn}, ‖Pn‖ → 0, one has

lim
n→∞

R(f, Pn) = α .

The number α is called the integral of f over [a, b] and is denoted by

ˆ b

a

f ,

ˆ b

a

f dx , or

ˆ b

a

f(x) dx .

1
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When f is non-negative, obviously the Riemann sums are approximate areas and the
integral is the area of the set bounded by the x-axis, the graph of f , and the vertical lines
x = a and x = b.

In the definition above, the existence of α is presupposed for an integrable function.
An immediate question arise: Is every function integrable? Or equivalently, are there any
non-integrable functions? The answer is yes. Let me give you two examples.

First, consider the function f(x) = 1/x , x ∈ (0, 1] and f(0) = 0. This is a function
defined on [0, 1], which is unbounded near 0. Suppose on the contrary that f is integrable.
Just consider the special case ε = 1, there is some δ such that

|R(f, P )− α| < 1 , ∀P, ‖P‖ < δ.

Fix one such P . The inequality |R(f, P )− α| < 1 is equivalent to −1 < R(f, P )− α < 1.
In particular, R(f, P )− α < 1, that is, R(f, P ) < 1 + α, so f(z1)∆x1 ≤ R(f, P ) < 1 + α
or 1/z1∆x1 < 1 + α . Here α and ∆x1 are fixed number, but the tag point z1 can be
chosen arbitrary from (0, 1]. By choosing it as small as you like, you can make 1/z1∆x1

as large as you like, and this contradicts the inequality 1/z1∆x1 < 1 + α. Hence f is not
integrable. In fact, it can be shown that all unbounded functions are not integrable.

Second, not all bounded functions are integrable. Consider the function g on [0, 1]
defined by g(x) = 0 if x is irrational and g(x) = 1 if x is rational. g is a function bounded
between 0 and 1. As there are rational and irrational numbers in any interval, for each
partition P , when we pick a rational number zj from [xj−1, xj] to form a tagged partition,
the Riemann sum R(g, P ) =

∑
j g(zj)∆xj =

∑
j ∆xj = 1. On the other hand, picking tag

points wj to be irrational instead, g(wj) = 0 so R(g, P ) =
∑

j g(wj)∆xj = 0. You can see
that by choosing different tags, the Riemann sums equal to 1 or 0. It cannot converge to
a single number α.

Fortunately, most bounded functions people encountered in applications are integrable.
It suffices to know that all continuous functions are integrable. In fact, all functions with
finitely many jump discontinuity are also integrable.

Coming to the evaluation of an integral, from the definition of integrability we have
the following approach, namely, take a sequence of tagged partitions {Pn} whose norms
tend to 0, then ˆ b

a

f dx = lim
n→∞

R(f, Pn) .

Although looking very simple, this method is not practical since it involves a limit process
which becomes quite complicated even for very simple functions. You may try it on the
functions f(x) = x2 or sin x. Now, we are thankful to Issac Newton for his discovery
that the evaluation of an integral can be achieved by the following scheme. First, call
a function F a primitive function for a given function f if F is differentiable and its
derivative is equal to f , that is, F ′ = f . When f is integrable, Newton’s fundamental
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theorem of calculus asserts that
ˆ b

a

f dx = F (b)− F (a) .

As a result, using the simple fact that a primitive function of x2 is x3/3,

ˆ b

a

x2 dx =
b3

3
− a3

3
.

Likewise, a primitive function of sinx is given by − cosx, hence

ˆ b

a

sinx dx = cos a− cos b .

Finally, integrals representing the areas of common geometric figures which had been
troubling people since the ancient times are evaluated successfully in this way.

1.2 Double Integral In An Rectangle

Now we come to the integration of functions of two variables. This is a direct extension of
what we did in the single variable case where now an interval is replaced by a rectangle.

Let R = [a, b]× [c, d] be a rectangle and f a bounded function defined in R. Likewise,
here a finite set of points

{(xi, yj) : a = x0 < x1 < · · · < xn = b, c = y0 < y1 < · · · < ym = d, }

is called a partition on R. We denote

Rij = [xi−1, xi]× [yj−1, yj] ,

∆xi = xi − xi−1 , ∆yj = yj − yj−1 ,

and let its norm ‖P‖ be the maximum among all ∆xi,∆yj’s. Pick a point pij from Rij

for each (i, j) we form a collection of tags. A partition together with a choice of tags is
called a tagged partition.

Let f be a function defined in R. Associate to each tagged partition (P, pij), we form
the Riemann sum

R(f, P ) =
∑
i,j

f(pij)|Rij| ,

where |Rij| = ∆xi∆yj is the area of the subrectangle Rij. A function f is called
(Riemann) integrable if there exists a number α such that, for each ε > 0, there is
some δ > 0 so that

|R(f, P )− α| < ε , ∀P, ‖P‖ < δ .
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Alternatively, it requires that for each sequence of partitions {Pn} with ‖Pn‖ → 0 as
n→∞, one has

lim
n→∞

R(f, Pn) = α ,

regardless to all choices of tagged points. The number α is called the (Riemann) integral
of f over R and is usually denoted by¨

R

f dA , or

¨
R

f dA(x, y) , or

¨
R

f(x, y) dA(x, y) .

When f is nonnegative, the Riemann sums are approximate volumes and the Riemann
integral is the volume of the solid formed between the graph z = f(x, y) and the xy-plane
over R.

Just as in the single variable case, unbounded functions are not integrable. In the
following discussion, it is implicitly assumed all functions in concern are bounded.

Using the definition of Riemann integral, one can show that the following basic prop-
erties hold:

Theorem 1.1. Let f and g be integrable in R. For α, β ∈ R.

(a) αf + βg is integrable and¨
R

(αf + βg) dA = α

¨
R

f dA+ β

¨
R

g dA .

(b) fg is also integrable.

(c) ¨
R

f dA ≥ 0 ,

whenever f is non-negative.

The first property, whose proof readily follows from the definition of integrability,
shows that all integrable functions form a real vector space and the mapping

f 7→
¨
R

f dA

is a linear mapping from this vector space to the space of real numbers.

The proof of (b) will be given in MATH2060.

(c), which follows readily from definition, may be termed as positivity preserving (or
more precisely non-negativity preserving). It implies the obvious fact that the area is
always non-negative.
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Note that f ≥ 0 and
˜
R
f dA = 0 do not necessarily implies f ≡ 0. It suffices to

observe that a nonnegative function which vanishes everywhere except at finitely points
satisfy these two conditions. On the other hand, it is true that they imply f ≡ 0 when f
is continuous.

Combining linearity and positivity preserving, we have¨
R

g dA ≥
¨
R

f dA ,

provided g ≥ f in R.

Theorem 1.2. (a) The constant function c is integrable and¨
R

c dA = c|R| , |R| ≡ (b− a)(d− c) .

(b) There are non-integrable functions in each rectangle.

(c) Every continuous function is integrable.

(a) is easily proved. (b) can be shown by considering the function ϕ(x, y) = 0 if x is a
rational number in [a, b] and ϕ(x, y) = 1 when x is irrational. Since there are rational and
irrational points in each subrectangle Rij, by choosing suitable tags, ϕ(pij) could be 0 or
1. Consequently, each f(pij)|Rij| is either equal to 0 or |Rij|. It follows that the Riemann
sum of the same partition could be 0 or

∑
i,j |Rij| = (b − a)(d − c). It is impossible to

find a number α such that |R(f, P )− α| < ε for all tags.

We leave the proof of (c) to MATH2060. Indeed, not only continuous functions are
integrable, all piecewise continuous functions are integrable too. A bounded function
f(x, y) in a rectangle which is continuously except along some curves or at some points
is called piecewise continuous. We knew that a bounded function f(x) on [a, b] which
is continuous except at finitely many points is integrable. The integrability of piecewise
continuous functions is the two dimensional version of this fact.

Now we come to the evaluation of a double integral. Thankfully we do not need a new
version of the fundamental theorem of calculus. The following theorem of Fubini saves
our lives by reducing the double integral to an iterated integral (two integrals of a single
variable).

Theorem 1.3. (Fubini’s Theorem) Let f be a piecewise continuous function in R
satisfying (a) for each x ∈ [a, b], f(x, y) is integrable in [c, d], and (b) the function g(x) ≡´ d
c
f(x, y) dy is integrable on [a, b]. Then

¨
R

f dA =

ˆ b

a

ˆ d

c

f(x, y) dydx .
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The assumption on f is automatically satisfied when f is continuous on R. For, for
each fixed x, f(x, y) is continuous and hence integrable on [c, d]. After a single integration,
the function g is again continuous and hence integrable on [a, b].

The idea of the proof of Fubini’s theorem is simple. The double integral can be
approximated by Riemann sums. Taking tags of the form (x∗i , y

∗
j ), we have

¨
R

f dA ≈
∑
i,j

f(x∗i , y
∗
j )∆xi∆yj =

∑
i

(∑
j

f(x∗i , y
∗
j )∆yj

)
∆xi .

The symbol ≈ means “very close to ”. When ‖P‖ is very small, both ∆yj and ∆xi are
also very small,

∑
i

(∑
j

f(x∗i , y
∗
j )∆yj

)
∆xi ≈

∑
i

ˆ d

c

f(x∗i , y) dy ∆xi ≈
ˆ b

a

(ˆ d

c

f(x, y)dy

)
dx .

A similar result holds when the role of x and y are switched. In other words,

¨
R

f dA =

ˆ d

c

ˆ b

a

f(x, y) dxdy .

It implies the “commutative relation”

ˆ b

a

ˆ d

c

f(x, y) dydx =

ˆ d

c

ˆ b

a

f(x, y) dxdy .

For those who would like to see a more detailed proof of Fubini’s theorem, let us turn
to the following basic result.

Theorem 1.4. (Uniform Continuity Theorem) Every continuous function in a re-
gion R satisfies the following property: Given ε > 0, there is some δ > 0 such that

|f(x, y)− f(x′, y′)| < ε ,

for all (x, y), (x′, y′) ∈ R,
√

(x− x′)2 + (y − y′)2 < δ .

The following proof is for optional readings.

We provide a rigorous proof of Theorem 1.3 for continuous functions as follows. Let
ε > 0 be given and P a partition satisfying ‖P‖ < δ where δ is specified by the Uniform
Continuity Theorem above. For a fixed x∗i , |f(x∗i , y

∗
j ) − f(x∗i , y)| < ε for all y ∈ Rij. In

other words,
−ε < f(x∗i , y

∗
j )− f(x∗i , y) < ε .
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Integrating this inequality over [yj−1, yj],

−ε∆yj < f(x∗i , y
∗
j )∆yj −

ˆ yj

yj−1

f(x∗i , y) dy < ε∆yj.

Summing up over all j,

−ε(d− c) <
∑
j

f(x∗i , y
∗
j )∆yj −

ˆ d

c

f(x∗i , y) dy < ε(d− c) .

Now, taking

g(x) =

ˆ d

c

f(x, y) dy ,

this inequality becomes

−ε(d− c) <
∑
j

f(x∗i , y
∗
j )∆yj − g(x∗i ) < ε(d− c) .

Multipying this inequality with ∆xi and summing up, we have

−ε(d− c)(b− a) <
∑
i,j

f(x∗i , y
∗
j )∆yj∆xi −R(g,Q) < ε(d− c)(b− a) ,

where Q is the partition x0 < x1 < · · · < xn. That is,

|R(f, P )−R(g,Q)| < (b− a)(d− c)ε .

Now, taking P = Pn be a sequence of partitions whose norms tend to 0, the norms of the
corresponding Qn also tends to 0. Letting n→∞,∣∣∣∣¨

R

f −
ˆ b

a

(ˆ d

c

f(x, y) dy

)
dx

∣∣∣∣ ≤ (b− a)(d− c)ε .

Since ε > 0 is arbitrary, we conclude

¨
R

f −
ˆ b

a

ˆ d

c

f(x, y) dydx = 0 ,

and Fubini’s theorem holds.

Example 1.1 Evaluate ¨
R

xy2 dA ,
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where R is the rectangle [0, 2]× [0, 1]. By Fubini’s Theorem,

¨
R

xy2 dA =

ˆ 2

0

ˆ 1

0

xy2 dy dx

=

ˆ 2

0

xy3

3

∣∣∣y=1

y=0
dx

=

ˆ 2

0

x

3
dx

=
2

3
.

Alternatively,
¨
R

xy2 dA =

ˆ 1

0

ˆ 2

0

xy2 dx dy

=

ˆ 1

0

x2y2

2

∣∣∣x=2

x=0
dy

=

ˆ 1

0

2y2 dy

=
2

3
.

Sometimes, the order of integration matters. Here is an example.

Example 1.2 Evaluate ¨
R

x sinxy dA ,

where R = [0, 1]× [0, π].

We have ¨
R

x sinxy dA =

ˆ π

0

ˆ 1

0

x sinxy dxdy

=

ˆ π

0

(
− cos y

y
+

sin y

y2

)
dy .

At this point we don’t know how to proceed further. So we change the order of integration.
¨
R

x sinxy dA =

ˆ 1

0

ˆ π

0

x sinxy dy dx

=

ˆ 1

0

x× − cosxy

x

∣∣∣y=π

y=0
dx

=

ˆ 1

0

(− cos πx+ 1) dx

= 1 .
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Example 1.3 Let f be the function in R = [−1, 1]× [0, 1] given by f(x, y) = 2, x2 ≤ y
and f(x, y) = 0, x2 > y. Evaluate

¨
R

x2f(x, y) dA .

This function is equal to 2 and 0 respectively in the regions above or under the curve
y = x2. It has a jump across the curve y = x2, hence is piecewise continuous. One can
verify that Fubini’s theorem is applicable. By this theorem,

¨
R

x2f(x, y) dA =

ˆ 1

−1

ˆ 1

0

x2f(x, y) dydx .

As

ˆ 1

0

f(x, y) dy =

ˆ x2

0

f(x, y) dy +

ˆ 1

x2
f(x, y) dy

=

ˆ 1

x2
2 dy

= 2(1− x2) ,

we have
¨
R

x2f(x, y) dA =

ˆ 1

−1

x2 × 2(1− x2) dx = 2

(
x3

3
− x5

5

) ∣∣∣1
−1

=
8

15
.

1.3 Regions In The Plane

First of all, intuitively speaking, a C1-curve is a curve that admits a tangent at every
point and the tangent changes continuously as the points vary. Rigorously, it means in a
suitably chosen coordinates, the curve can be locally expressed as the graph (x, f(x)) of
a C1-function, that is, a function whose derivative exists and is continuous. A curve is
simple if it has no self-intersection point. It is closed if it closes up and has no endpoints.
Intuitively speaking, a simple closed curve looks like a deformed circle. We will also
consider piecewise C1-curves, that is, those continuous curves which are C1 except at
finitely many points. A set which is bounded by one or several closed piecewise C1-curves
is called a region or a domain. This definition is not consistent with the usual definition
of a region/domain in mathematics literature. However, we will adopt this definition by
following our textbook. We will discuss this definition more thoroughly later.

Here are some examples of regions.

• Dr = {(x, y) : x2 +y2 ≤ r2} is the disk, the region bounded by the unit circle which
is a simple closed C1-curve.
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• {(x, y) : x2/a2 + y2/b2 ≤ 1}. The ellipse is also a simple closed C1-curve which
bounds a region.

• Let C1 and C2 be two circles with C1 contained in C2. These two circles bound a
region. The punctured disk Dr \ {(0, 0)} is also a region where the point {(0, 0)}
may be viewed as a degenerate circle.

• Let ∆ be the points lying on or inside a triangle. A triangle is a simple, closed,
piecewise C1-curve composed of three line segments. Tangents do not exist at the
three vertices.

• Similarly, every polygon whose boundary is a simple, closed piecewise C1-curve is a
region.

• The cardioid {(r, θ) : r = 1 + cos θ)} (in polar coordinates) is a simple closed,
piecewise C1-curve which admits a non-differentiable point (ie, a cusp) at the origin.
It also bounds a region.

A region must be bounded from its definition. It consists of interior points and bound-
ary points. In this chapter,

A curve always means a simple, piecewise C1-curve and a region is the plane set
bounded by one or several simple, closed piecewise C1-curves or points.

In Advanced Calculus I, the objects of study are continuous and differentiable func-
tions. In integration theory the classes of functions are wider. Just like we are able to
integrate functions with discontinuity jumps in a single variable, we can integrate func-
tions which admit discontinuous points along some curves.

1.4 Double Integral In A Region

Now we consider double integrals over a region which is not necessarily a rectangle. In
fact, we will define double integrals over an arbitrary subset E in the plane. An obvious
way to achieve this goal is to extend f which is only defined in E to the entire space by
setting it to be zero outside E. We may call it the extension of f from E and denoted by
f̃ . By picking a rectangle R containing E which is possible as long as E is bounded, we
may simply define ¨

E

fdA =

¨
R

f̃ dA ,

where f̃ is the extended function of f from D. To justify this approach, we need to
clarify two points. The first one is the definition must be independent of the choice of the
rectangle. The next one seems more serious. Namely, even if the function f is continuous
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in E, the extended function f̃ may develop a jump discontinuity across the boundary of E.

Theorem 1.5. Let R1 and R2 be two rectangles containing a bounded set E. Then¨
R1

f̃ dA =

¨
R2

f̃ dA ,

provided f̃ is integrable when restricted to R1 and R2.

Proof. Let R3 ≡ R1 ∩ R2. For any partition P on R3, extend it to be a partition P ′ on
R1. The Riemann sum of f̃ on R1 can be written as

R(f̃, P ′) =
∑

1

f̃(zij)|Rij|+
∑

2

f̃(zij)|Rij| ,

where
∑

1 refers to the summation over all subrectangles lying inside R3 while
∑

2 sums
up those lying outside R3. Here the tag point zij is chosen to be the center of each
subrectangle. Since f̃(zij) = 0 for all subrectangles in the second summation, we have

R(f̃, P ′) =
∑

1

f̃(zij)|Rij| .

Similarly, the same argument applying to R2 instead of R1 yields

R(f̃, P ′′) =
∑

1

f̃(zij)|Rij| ,

where P ′′ is a partition extending P in R2. It follows that

R(f̃, P ′) = R(f̃, P ′′) .

Letting ‖P‖ → 0, we can make ‖P ′‖, ‖P ′′‖ → 0 too. The relation above implies
¨
R1

f̃ =

¨
R2

f̃ ,

the theorem follows.

Concerning the integrability of the extended function we have the following result.

Theorem 1.6. (a) f̃ is integrable when E is a region in which f is piecewise continuous.

(b) f̃ is integrable when E is a bounded curve and f is a bounded function in E. In fact,
¨
E

f dA = 0 ,

for any rectangle R.
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Proof. (a) As f̃ extends f , it is piecewise continuous in the region and may develop
jump discontinuity across the boundary curves of the region. Therefore, it is piecewise
continuous in the plane and hence integrable in any rectangle.

(b) Since E is a curve, the extended function f̃ may have discontinuity only at points on
E. As a result, f̃ is piecewise continuous and hence integrable. Let R be any rectangle
containing the curve E. Observing that in any subrectangle in a partition, we can always
choose tag point pij such that f̃(pij) = 0 (a curve cannot fill up a rectangle). Henceforth,
for any partition P , there are tags so that the corresponding Riemann sum is equal to 0.
By letting the norm of these partitions going to zero, we conclude that

¨
R

f̃ dA = 0 .

For a bounded function defined in some set E, its extension to the entire plane may
not be integrable. For instance, let E be all points (x, y) where x and y are rational
numbers sitting inside the unit disk and let f(x, y) = 1. f is a constant function in E and
hence continuous. However, it is clear that f̃ is not integrable in any rectangle containing
the unit disk.

In view of these considerations, we define the integral of a bounded function f over
any bounded subset E in R2 by setting

¨
E

f dA ≡
¨
R

f̃ dA , (1.1)

where R is any rectangle containing E. The function f is called integrable over E
provided f̃ is integrable over R. By Theorem 1.5, the integrability of f is independent
of the choice of R. When f is nonnegative, the integral of f over E is defined to be the
volume of the solid bounded between the graph of f and the xy-plane over the set E. It
becomes intuitively apparent when the underlying set is a region. When we take f ≡ 1,
the integral, which becomes ¨

E

1 dA ,

is defined to be the area of E. Again it is intuitively apparent when E is a region. We
have successfully to associate the notion of area to any set whose characteristic function
is integrable.

Using (1.1) we have the following extension of Theorem 1.1.

Theorem 1.1’. Let f and g be integrable in the bounded set E. For α, β ∈ R.
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(a) αf + βg is integrable in E and

¨
E

(αf + βg) dA = α

¨
E

f dA+ β

¨
E

g dA .

(b) fg is integrable in E.

(c) ¨
E

f dA ≥ 0 ,

provided f is non-negative.

This theorem can be deduced from Theorem 1.1 after clarifying the meaning of its
statements.

To proceed further, we associate a set with a function. In this way, sets can be
manipulated as functions.

Let E be a nonempty set in R2 (actually it could be defined in Rn for any n.) Its
characteristic function χE is defined to be χE(x, y) = 1 , (x, y) ∈ E, and χE(x, y) =
0 otherwise. Also set χφ ≡ 0. We point out the following relations:

• χA∪B = χA + χB − χA∩B .

• χA∩B = χA · χB .

• χA ≤ χB if and only if A ⊂ B.

Combining the first two, we have

χA∪B = χA + χB − χA · χB .

We are ready to prove the following frequently used result.

Theorem 1.7. Divide the region D by a piecewise C1-curve C to obtain two regions D1

and D2. For any integrable function f in D, f is also integrable in Di, i = 1, 2. Moreover,

¨
D

f dA =

¨
D1

f dA+

¨
D2

f dA .

Proof. Since the boundary of Di are composed of piecewise C1-curves, according to Theo-
rem 5, the characteristic functions χDi

are integrable, so fχDi
, as product of two integrable
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functions, is also integrable. From C = D1 ∩D2 and χD = χD1 + χD2 − χD1∩D2 , we have
χD = χD1 + χD2 − χC . Let R be a rectangle containing D in its interior. We have¨

D

f dA =

¨
R

f̃ dA

=

¨
R

f̃χD1 dA+

¨
R

f̃χD2 −
¨
R

f̃χC .

The function f̃χD1 is equal to f in D1 and 0 outside D1. Therefore, it is the extension of
f from D1, that is, ¨

R

f̃χD1 dA =

¨
D1

f dA .

Similarly, we have ¨
R

f̃χD2 dA =

¨
D2

f dA ,

and ¨
R

f̃χC dA =

¨
C

f dA .

Thus, ¨
D

f dA =

¨
D1

f dA+

¨
D2

f dA−
¨
C

f dA ,

and the desired formula holds as the last term vanishes according to Theorem 1.6 (b).

Now we come to evaluation of a double integral in a region. We have discussed how to
do it in a rectangle. However, in most cases we need to perform integration over a region.
m We will work on two types of special regions. Type I is of the form

{(x, y) : f1(x) ≤ y ≤ f2(x), a ≤ x ≤ b} , fi, i = 1, 2, is continuous ,

and Type II is

{(x, y) : g1(y) ≤ x ≤ g2(y), c ≤ y ≤ d} , gi, i = 1, 2, is continuous .

More complicated regions could be decomposed to a union of Type I and Type II regions,
with the help from Theorem 1.7.

Theorem 1.8. (Fubini’s Theorem)

(a) Let D be a Type I region. For a continuous function f in D,
¨
D

f(x, y) dA =

ˆ b

a

ˆ f2(x)

f1(x)

f(x, y) dydx .

(b) Let D be a Type II region. For a continuous function F in D,
¨
D

f(x, y) dA =

ˆ d

c

ˆ g2(y)

g1(y)

f(x, y) dxdy .
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Proof. We prove (a) only. Let R = [a, b] × [c, d] be a rectangle containing the Type I
region D. By Theorem 1.6, f̃ is integrable in R. By Theorem 1.4, Fubini’s Theorem on
a rectangle,

¨
D

f(x, y) dA =

¨
R

f̃(x, y) dA

=

ˆ b

a

ˆ d

c

f̃(x, y) dydx

=

ˆ b

a

(ˆ f1(x)

c

f̃(x, y) dy +

ˆ f2(x)

f1(x)

f̃(x, y) dy +

ˆ d

f2(x)

f̃(x, y) dy

)
dx

=

ˆ b

a

ˆ f2(x)

f1(x)

f(x, y) dydx.

Example 1.3 Evaluate ¨
D

(2y + 1) dA ,

where D is the region bounded by y = 2x and y = x2.

In order to determine f1 and f2 in D, first we sketch the region. Indeed, the curves of
y = 2x and y = x2 intersect at (0, 0) and (0, 2). The region of integration is expressed as

D =
{

(x, y) : x2 ≤ y ≤ 2x, x ∈ [0, 2]
}
.

By Fubini’s Theorem,

¨
D

(2y + 1) dA =

ˆ 2

0

ˆ 2x

x2
(2y + 1) du dx

=

ˆ 2

0

(y2 + y)
∣∣∣2x
x2
dx

=
28

5
.

The region D can also be expressed as

D = {(x, y) :
y

2
≤ x ≤ √y, y ∈ [0, 4]}.



16 CHAPTER 1. DOUBLE AND TRIPLE INTEGRALS

We have

¨
D

(2y + 1) dA =

ˆ 4

0

ˆ √y
y/2

(2y + 1) dx dy

=

ˆ 4

0

(2y + 1)

ˆ √y
y/2

dx dy

=

ˆ 4

0

(2y + 1)(
√
y − y

2
) dy

=
28

5
.

Example 1.4 Evaluate the double integral

¨
D

x dA ,

where D is the region bounded by y = 0, x+ y = 0, and the unit circle on the half plane
x ≥ 0.

The line x+ y = 0 intersection the circle x2 + y2 = 1 at (
√

2/2,−
√

2/2), so D can be
described as

D = {(x, y) : −y ≤ x ≤
√

1− y2, y ∈ [−
√

2/2, 0]} .

Hence,

¨
D

x dA =

ˆ 0

−
√

2/2

ˆ √1−y2

−y
x dxdy

=
1

2

ˆ 0

−
√

2/2

(1− y2 − y) dy

=

√
2

6
.

If one insists to integrate in y first, we observe that D can be expression as the union
of D1 and D2:

D1 = {(x, y) : 0 ≤ y ≤ −x, x ∈ [0,
√

2/2]}

and

D2 = {(x, y) : −
√

1− x2 ≤ y ≤ 0, x ∈ [
√

2/2, 1]} .
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By Theorem 1.7,¨
D

x dA =

¨
D1

x dA+

¨
D2

x dA

=

ˆ √2/2

0

ˆ 0

−x
x dydx+

ˆ 1

√
2/2

ˆ 0

−
√

1−x2
x dydx

=

ˆ √2/2

0

x2 dx+

ˆ 1

√
2/2

x
√

1− x2 dx

=

√
2

6
.

Example 1.5 Evaluate the iterated integral
ˆ 1

0

ˆ 1

y

sinx

x
dxdy .

(The function sinx/x is bounded by 1. We may handily assign its value at x = 0 to
be 1. In fact, the value of the integral does not change when the values of the function
are modified at finitely many points.) It is hard to integrate sinx/x, so we switch the
order of integration. First, recognize this iterated integral is equal to the double integral¨

D

sinx

x
dA ,

where D is the triangle bounded between y = 0, y = x for x ∈ [0, 1]. By Fubini’s Theorem,

ˆ 1

0

ˆ 1

y

sinx

x
dxdy =

¨
D

sinx

x
dA

=

ˆ 1

0

ˆ x

0

sinx

x
dydx

=

ˆ 1

0

sinx

x
× x dx

=

ˆ 1

0

sinx dx

= 1− cos 1 .

Example 1.6 Find the volume of the prism whose base is the triangle bounded by
y = x, x = 1 and the x-axis and top lies on the plane z = 3− x− y.

Let T be the base triangle of the prism. The plane z = 3 − x − y is positive over T .
Hence the volume of the prism is given by¨

T

(3− x− y) dA .
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We have

¨
T

(3− x− y) dA =

ˆ 1

0

ˆ x

0

(3− x− y) dydx

=

ˆ 1

0

(3y − xy − y2

2
)
∣∣∣x
0
dx

=

ˆ 1

0

(3x− 3x2

2
) dx

= 1 .

In the following example we decompose the region into two and apply Theorem 1.7.

Example 1.7 Find the area of the region which is bounded between y = x2−4, y = x2−1
and x ≥ 0, y ≤ 0.

After sketching the figure, we see that the area of this region D is given by

¨
D

1 dA =

ˆ 1

0

ˆ x2−1

x2−4

dydx+

ˆ 2

1

ˆ 0

x2−4

dydx .

A straightforward calculation yields

¨
D

1 dA =
14

3
.

1.5 Generalized Riemann Sums

By introducing curves on a region D, D can be decomposed into a union of subregions Dk

whose interiors are mutually disjoint. We may call {Dk} a generalized partition on D.
(A partition divides the rectangle into subrectangles Rij, i = 1, · · · , n, j = 1, · · · ,m, but
now we cannot use i, j as indices, so we use a single index instead.) Choosing a tag point
pk from each Dk we can form a generalized Riemann sum R(f, P ) =

∑
k f(pk)|Dk|

for any bounded function f in D. Note that now the area of Dk, |Dk|, is well-defined.
When Dk’s are given by subrectangles Rij’s, the generalized Riemann sum reduces to the
Riemann sum. To measure the size of a partition, we have introduced the norm of a
partition. For a generalized partition we can introduce a norm which is essentially the old
one. Indeed, denote the norm again by ‖P‖ which is the maximum among all diameters
of Dk’s. In case the region is a rectangle R, the diameter of the subrectangle Rij is√

∆x2
i + ∆y2

j , hence the norm ‖P‖ is small if and only if the maximum of all diameters

are small. We see that in measuring smallness, the norm defined here is equivalent to the
one defined before.
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Theorem 1.9. Let f be continuous in a region D and let P be a generalized partition in
D. For ε > 0, there is some δ > 0 such that

∣∣∣∣R(f, P )−
¨
D

f dA

∣∣∣∣ < ε , ∀P, ‖P‖ < δ .

In other words, for any sequence of partitions {Pn}, ‖Pn‖ → 0,,

lim
n→∞

R(f, Pn) =

¨
D

f dA .

The proof relies on the following version of “Mean Value Theorem”: Let M and m be
the maximum/minimum of a continuous f in D. Then for any α ∈ [m,M ], there is some
p ∈ D such that f(p) = α. It sounds quite natural. For, let m = f(p1) and M = f(p2)
where p1,p2 are two points in D. We connect p1 to p2 by a continuous curve C in D.
As we go along C from p1 to p2, the values of f changes continuously from m to M .
Since f is continuous and α lies between m and M , there must a point p on C such that
f(p) = α.

Proof. By the Uniform Continuity Theorem (which continues to hold on a region), given
ε′ > 0, there is some δ such that |f(p) − f(q)| < ε′ whenever p and q are two points in
D whose distance is less than δ. We will take ε′ = ε/|D| where ε > 0 is given.

Now, let mk and Mk be the minimum and maximum of f over Dk. From mk ≤ f ≤Mk

in Dk and mkχDk
≤ f̃ ≤MkχDk

everywhere, we integrate over Dk to get

mk|Dk| ≤
¨
Dk

f dA ≤Mk|Dk| ,

or

mk ≤
1

|Dk|

¨
Dk

f dA ≤Mk .

By what we have said above, there is some p∗k ∈ Dk such that

f(p∗k) =
1

|Dk|

¨
Dk

f dA .
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Therefore, for any Riemann sum R(f, P ) =
∑

k f(q∗k)|Dk| with ‖P‖ < δ, we have∣∣∣∣∣∑
k

f(q∗k)|Dk| −
¨
D

f dA

∣∣∣∣∣
=

∣∣∣∣∣∑
k

f(q∗k)|Dk| −
∑
k

f(p∗k)|Dk|

∣∣∣∣∣
=

∣∣∣∣∣∑
k

(f(q∗k)− f(p∗k))|Dk|

∣∣∣∣∣
<

∑
k

ε

|D|
|Dk|

=
ε

|D|
|D| = ε ,

and the desired result follows.

We also have

Theorem 1.10. Let f and g be two continuous functions in the region D. Let pk and qk
be tag points for the sequence of generalised partition Pn. Then

lim
‖Pn‖→0

∑
k

f(pk)g(qk)|Dk| =
¨
D

fg dA .

Note that here the functions f and g here take different tag points. (These tags in
fact depend also on n.)

Proof. We need to show that for any ε > 0, there is some δ such that∣∣∣∣∣∑
k

f(pk)g(qk)|Dk| −
¨
D

fg dA

∣∣∣∣∣ < ε , ∀P, ‖P‖ < δ.

Since fg is continuous and so integrable in D, we can find δ1 such that∣∣∣∣∣∑
k

f(pk)g(pk)|Dk| −
¨
D

fg dA

∣∣∣∣∣ < ε

2
, ∀P, ‖P‖ < δ1.

On the other hand, by the Uniform Continuity Theorem, there is some δ2 such that

|g(p)− g(q)| < ε

2M |D|
, |p− q| < δ2 ,
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where M is a bounded on |f |. Therefore, for P satisfying ‖P‖ < δ = min{δ1, δ2},∣∣∣∣∣∑
k

f(pk)g(qk)|Dk| −
¨
D

fg dA

∣∣∣∣∣
≤

∣∣∣∣∣∑
k

f(pk)(g(qk)− g(pk))|Dk|

∣∣∣∣∣+

∣∣∣∣∣∑
k

f(pk)g(pk)|Dk| −
¨
D

fg dA

∣∣∣∣∣
≤ ε

2M |D|
×M |D|+ ε

2
< ε ,

done.

1.6 Double Integral in the Polar Coordinates

Each point in the plane (x, y) (except (0, 0)) can be expressed as x = r cos θ and y = r sin θ
for a unique pair (r, θ), r > 0, θ ∈ [0, 2π). (r, θ) is called the polar coordinates of (x, y).
Let Φ be the map Φ(r, θ) = (r cos θ, r sin θ). It maps the strip [0,∞)× [0, 2π] onto R2 and
is one-to-one from (0,∞)×[0, 2π) onto R2\{(0, 0)}. Alternatively, it maps [0,∞)×[−π, π]
onto R2 and is one-to-one from (0,∞)× (−π, π] onto R2 \ {(0, 0)}. A curve expressed in
polar coordinates could look very different from its form in rectangular coordinates. Here
are some examples.

• The horizontal line y = c, c > 0, becomes r = c/ sin θ, θ ∈ (0, π) in polar coordi-
nates.

• The circle x2 + y2 = a2 becomes r = a .

• The circle (x− a/2)2 + y2 = a2/4 becomes r = a cos θ, θ ∈ [−π/2, π/2] .

• The parabola y = a2 − x2 becomes

r(θ) =
− sin θ +

√
sin2 θ + 4a2 cos2 θ

2 cos2 θ
, θ ∈ [0, 2π], θ 6= 3π/2 .

Note that the ray at θ = 3π/2 does not hit the parabola.

Sometimes a curve is simpler when expressed in polar coordinates. For instance, the
cardioid is

r = 1 + a cos θ, θ ∈ [0, 2π],

where a ∈ (0, 1]. To express it in rectangular coordinates, we proceed as follows. First,
multiple the equation by r to get

x2 + y2 =
√
x2 + y2 + ax .
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Then move ax to the left and square to get

(x2 + y2 − ax)2 = x2 + y2 .

In the rectangular coordinates, the cardioid is a quartic equation.

A rectangle R = [r1, r2]× [θ1, θ2] in the (r, θ)-plane is mapped under Φ to the region

S = {(x, y) : x = r cos θ, y = r sin θ, r1 ≤ r ≤ r2, θ1 ≤ θ ≤ θ2, θ1, θ2 ∈ [0, 2π)} .

Any partition P on R introduces a generalized partition on S via Φ. Denote its subregions
by Sij = Φ(Rij).

Theorem 1.11. Let f be a bounded function which is continuous in S except along some
piecewise C1-curves. Then¨

S

f(x, y) dA =

¨
R

f(r cos θ, r sin θ)r drdθ .

Proof. Let us assume f is continuous in S. The area of Sij is given by

1

2
r2
i∆θj −

1

2
r2
i−1∆θj =

1

2
(ri−1 + ri)∆ri∆θj .

Let P be a partition on R with tags at the center of each Rij, that is, τij = (r∗i , θ
∗
j ) ≡

(ri−1 + ri)/2, (θj−1 + θj)/2)). Then pij = Φ(τij) is a tag for Sij. When ‖P‖ is small, the
generalized partition Sij = Φ(Rij) is also small in norm. We have

¨
S

f(x, y) dA ≈
∑
i,j

f(pij)|Sij| =
∑
i,j

f(Φ(τij))r
∗
i∆ri∆θj .

This sum is the same as
∑

i,j f(r∗i cos θ∗j , r
∗
i sin θ∗j )r

∗
i∆ri∆θj, which is a Riemann sum of

the function f(r cos θ, r sin θ)r with respect to the partition P . Since this function is
continuous in R, as ‖P‖ → 0, this Riemann sum tends to¨

R

f(Φ(r, θ))r dA(r, θ) .

On the other hand,∑
i,j

f(Φ(τij))r
∗
i∆ri∆θj =

∑
i,j

f(pij)|Sij| →
¨
S

f(x, y) dA ,

the theorem holds.

When a region D is expressed as

{(x, y) : x = r cos θ, y = r sin θ, ϕ1(θ) ≤ r ≤ ϕ2(θ), θ1 ≤ θ ≤ θ2, θ1, θ2 ∈ [0, 2π)} .

We have
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Theorem 1.12. For a continuous function f in D,

¨
D

f(x, y) dA(x, y) =

ˆ θ2

θ1

ˆ ϕ2(θ)

ϕ1(θ)

f(r cos θ, r sin θ)r drdθ .

Proof. Pick r1 < r2 so that the sector S formed by r1, r2, θ1, and θ2 contains D. We have
S = D1 ∪D ∪D2 where

D1 = {(x, y) : r1 ≤ r ≤ ϕ1(θ), θ ∈ [θ1, θ2]} ,

and
D2 = {(x, y) : ϕ2(θ) ≤ r ≤ r2, θ ∈ [θ1, θ2]} .

Let D̃ be the preimage of D under Φ. Then D̃ is of the form

{(r, θ) : ϕ1(θ) ≤ r ≤ ϕ2(θ), θ1 ≤ θ ≤ θ2}

and is contained in the rectangle R = [r1, r2]× [θ1, θ2]. Let f̃ be the usual extension of f
being zero outside D. We have
¨
D

f(x, y) dA(x, y) =

¨
D1

f̃(x, y) dA(x, y) +

¨
D

f̃(x, y) dA(x, y) +

¨
D2

f̃(x, y) dA(x, y)

=

¨
S

f̃(x, y) dA(x, y)

=

¨
R

f̃(r cos θ, r sin θ)r dA(r, θ) (by Theorem 1.11)

=

ˆ θ2

θ1

ˆ r2

r1

f̃(r cos θ, r sin θ)rdrdθ

=

ˆ θ2

θ1

(ˆ ϕ1(θ)

r1

+

ˆ ϕ2(θ)

ϕ1(θ)

+

ˆ r2

ϕ2(θ)

)
f̃(r cos θ, r sin θ)rdrdθ

=

ˆ θ2

θ1

ˆ ϕ2(θ)

ϕ1(θ)

f(r cos θ, r sin θ)rdrdθ .

When applying this theorem, it is crucial to determine θi and φi, i = 1, 2. Let us illus-
trate the “ray test” by considering the following example. Let D be the region bounded
by the horizonal line y = 1 and the circle x2 + y2 = 4 and we want to express D in polar
coordinates. First, consider a ray from the origin with inclination angle θ (the angle the
ray makes with the positive x-axis.) Clearly it meets D if and only if it lies between the
angle θ1 and θ2 where sin θ1 = 1/2 and sin θ2 = −1/2, that is, θ1 = π/6 and θ2 = 5π/6.
For θ ∈ [θ1, θ2], the ray first meets y = 1 or r = 1/ sin θ and then r = 2. It follows that D
is described by {

(r, θ) : 1/ sin θ ≤ r ≤ r, θ ∈ [π/6, 5π/6]
}
.
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Example 1.8 Evaluate the iterated integral

ˆ 2

1

ˆ √2x−x2

0

y dydx .

We use polar coordinates to evaluate this integral. First of all, the graph of y =
√

2x− x2

is the circle of radius 1 at (1, 0). The region of integration is given by

G = {(x, y) : 0 ≤ y ≤
√

2x− x2 , x ∈ [1, 2]} .

To express it in polar coordinates, observe that every ray with θ ∈ [0, π/4] first hits the
vertical line x = 1 and then the circle. A ray out of this range does not hit G. In
polar coordinates, x = 1 is given by r = 1/ cos θ and y =

√
2x− x2 becomes r = 2 cos θ.

Therefore,

ˆ 2

1

ˆ √2x−x2

0

y dydx =

¨
G

y dA

=

ˆ π/4

0

ˆ 2 cos θ

1/ cos θ

r sin θ r drdθ

=

ˆ π/4

0

1

3

(
8 cos3 θ − 1

cos3 θ

)
sin θ dθ

=
1

2
− 1

6

=
1

3
.

Example 1.9 Find the area of the lemniscate r2 = 4 cos 2θ .

Always sketch the figure before integrating. The lemniscate is a two-leaves like figure
symmetric with respect to both axes. For θ ∈ [0, 2π], 2θ ∈ [0, 4π]. We see that cos 2θ is
nonnegative on the intervals [0, π/4], [3π/4, π], [π, 5π/4], [7π/4, 2π] only. By symmetry it
suffices to integrate over the range θ ∈ [0, π/4]. Any ray emitting from the origin with
θ ∈ [0, π/4] hits the lemniscate at one point. Hence the area of the lemniscate is given by

¨
D

dA = 4

ˆ π/4

0

ˆ (4 cos 2θ)1/2

0

r drdθ

= 4

ˆ π/4

0

1

2
× 4 cos 2θ dθ

= 4 .

Example 1.10 LetD be the region bounded by y = 1, y =
√

3x, and the circle x2+y2 = 4.
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The line y =
√

3x changes to r sin θ =
√

3r cos θ, that is, tan θ =
√

3. So it is θ = π/3
in polar coordinates. On the other hand, y = 1 intersects x2 + y2 = 4 at (

√
3, 1), hence

the line from the origin to (
√

3, 1) is y = x/
√

3, that is, θ = π/6. In polar coordinates, D
is described as

{(r, θ) : 1/ sin θ ≤ r ≤ 2, π/6 ≤ θ ≤ π/3 }.

The area of D is equal to

¨
D

1 dA =

ˆ π/3

π/6

ˆ 2

1/ sin θ

r drdθ

=

ˆ π/3

π/6

1

2

(
4− 1

sin2 θ

)
dθ

=
1

2
(4θ + cot θ)

∣∣∣π/3
π/6

=
π −
√

3

3
.

Example 1.11 Find the area pinched between the curves r = 3/2 and r = 1 + cos θ .

The circle r = 3/2 and the cardioid r = 1+cos θ intersect 1+cos θ = 3/2 at θ = ±π/3.
When θ ∈ [−π/3, π/3], the cardioid lies on outside and the circle inside. When θ ∈ [π/3, π]
or [−π,−π/3], the circle lies outside and the cardioid inside. By symmetry, it suffices to
calculate things in the first and the second quadrants. We have

1

2
Area =

ˆ π/3

0

ˆ 1+cos θ

3/2

r drdθ +

ˆ π

π/3

ˆ 3/2

1+cos θ

r drdθ

=
1

2

ˆ π/3

0

(
− 3

4
+ 2 cos θ +

1

2
cos 2θ

)
dθ

+
1

2

ˆ π

π/3

(3

4
− 2 cos θ − 1

2
cos 2θ

)
dθ

=
π

8
+

5
√

3

4
.

Hence the area is given by (π + 10
√

3)/4.

Sometimes we need to decompose the regions into two.

Example 1.12. Express the integral

ˆ √5

0

ˆ 5

x2
f(x, y) dydx

in polar coordinates.
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Well, the region is the one sitting in the first quadrant bounded by the y-axis, hori-
zontal line y = 5 and the parabola y = x2. The latter two curves intersect at (

√
5, 5) and

(−
√

5, 5). Any ray from θ ∈ [0, α], α = tan−1
√

5/5, hits the parabola once. On the other
hand, any ray from θ ∈ [α, π/2] hits the horizontal line y = 5 once. We have

ˆ √5

0

ˆ 5

x2
f(x, y) dydx

=

ˆ α

0

ˆ sin θ/ cos2 θ

0

f(r cos θ, r sin θ)r drdθ +

ˆ π/2

α

ˆ 5/ sin θ

0

f(r cos θ, r sin θ)r drdθ .

1.7 Improper Integral

In Riemann integrals the functions under consideration are always bounded and the re-
gions of integration are bounded. In practise we sometimes encounter integrals in which
either the integrands or the regions are unbounded. In this section we consider two typ-
ical situations. First, the function becomes infinity at a point, and second, the region is
unbounded.

Let D be a bounded region and f a function in D which is continuous everywhere
except at a point (x0, y0) and f(x, y) becomes positive or negative infinity as (x, y) →
(x0, y0). We say the improper integral of f over D exists if

lim
a→0

¨
D\Da

f(x, y) dA

exists, where Da is the disk of radius a centered at (x0, y0). When it holds, let

¨
D

f dA = lim
a→0

¨
D\Da

f(x, y) dA . (1.2)

We use the same notation to denote the improper integral whenever it exists.

Example 1.9 Determine the range of α such the improper integral

¨
D

(x2 + y2)α/2 dA , α < 0,

where D is any region containing the origin.

It is also clear it suffices to take D to be the disk of radius 1 at the origin. Introducing
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polar coordinates, when 2α 6= −1,

¨
D\Da

(x2 + y2)α/2 dA =

ˆ 2π

0

ˆ 1

a

rαr drdθ

=
2π

α + 2

(
1− aα+2

)
→ 2π

α + 2
,

if and only if α + 2 > 0. Hence the improper integral exists for α ∈ (−2, 0). When
α = −2, we have instead

¨
D\Da

(x2 + y2)α/2 dA = 2π| log a| → ∞ ,

as a→ 0. The improper integral does not exist when α = −2.

Next, consider an unbounded region D and a function f defined in D which assumes
a definite sign, that is, either non-negative or non-positive as x ∈ D goes to ∞. Call the
following improper integral exists if

¨
D

f dA = lim
b→∞

¨
D∩Db

f dA , (1.3)

where now Db is the disk with radius b centered at the origin.

We consider an interesting application of the use of polar coordinates.

Example 1.10 Evaluate ˆ ∞
−∞

e−x
2

dx .

This is an improper integral of a single variable. The trick is to make it a double integral.
We have ¨

Da

e−x
2−y2 dA =

ˆ 2π

0

ˆ a

0

e−r
2

r drdθ = π(1− e−a2)→ π ,

as a→∞. It follows that the improper integral

¨
R2

e−x
2−y2 dA

exists and is equal to π. Let Ra be the square with side length 2a at the origin. Using
Da ⊂ Ra ⊂ D√2a, we see that

lim
a→∞

¨
Ra

e−x
2−y2 dA = lim

a→∞

¨
Da

e−x
2−y2 dA = π .
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Now,
ˆ a

−a
e−x

2

dx×
ˆ a

−a
e−y

2

dy =

ˆ a

−a

ˆ a

−a
e−x

2+y2 dydx

=

¨
Ra

e−x
2−y2 dA

→ π .

We conclude that ˆ ∞
−∞

e−x
2

dx =
√
π . (1.4)

1.8 Triple Integrals

The theory of triple integrals is essentially the same as the double integral. It suffices
to point out that a region in space is bounded by one or several closed surfaces, each of
which are composed of pieces of C1-surfaces meet along some C1-curves. We will not give
a precise definition here, but the concept is clear in an intuitive way. Let us look at some
examples:

• The sphere {(x, y, z) : (x−1)2 +(y− b)2 +(z− c)2 = r2} is a C1-surface with center
(a, b, c) and radius r. The region bounded by the sphere is a ball.

• The rectangular box is the region bounded by the planes x = a, b, y = c, d, z = e, f .
Its boundary is composed by six pieces of C1-surfaces (rectangles in fact) meeting
along line segments.

• The circular cone {(x, y, z) : z =
√
x2 + y2} is an unbounded surface which has a

sharp corner at the origin. We could truncate it to get a bounded one {(x, y, z) :
z =

√
x2 + y2, z = h} to get a region bounded by two surfaces, one being the

circular cone and the other the plane z = h

• The torus obtained by rotating the circle (y−a)2 +z2 = b2, a < b, around the z-axis.
It is a C1-surface which bounds a region.

Parallel to the double integral, a rectangular box B is given by [a, b] × [c, d] × [e, f ]
and a partition P on B is the collection of points

a = x0 < x1 < · · · < xn = b, c = y0 < y1 < · · · < ym = d, e = z0 < z1 < · · · < zl = f .

The partition P divides B into subrectangular boxes Bijk = [xi−1, xi]×[yj−1, yj]×[zk−1, zk].
For a bounded function f in B, its Riemann sum is given by

R(f, P ) =
∑
i,j,k

f(pijk)|Bijk|, ,
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where |Bijk| = ∆xi∆yj∆zk. The function f is called integrable if there is a number α
such that for every ε > 0, there is some δ > 0 such that

|R(f, P )− α| < ε , ∀P, ‖P‖ < δ ,

where ‖P‖ is the maximum among all ∆xi,∆yj,∆zk. The integral α will be denoted by
˚

B

f dV, or

˚
B

f(x, y, z) dV, or

˚
B

f(x, y, z) dV (x, y, z) .

The analog of Theorems 1.1 and 1.2 hold for triple integrals, and I trust you to
formulate them. We also have the analog of Theorem 1.3

Theorem 1.13. (Fubini’s Theorem) Let f be a piecewise continuous function in a
rectangular box B. Then

˚
B

f dV =

¨
R

ˆ f

e

f(x, y, z) dz dA(x, y) (R = [a, b]× [c, d]) .

After reducing the triple integral to a double integral and a single integral, we can
apply Fubini’s theorem to reduced the double integral to iterated integrals as before.

Piecewise continuous functions are those bounded functions that are continuous ev-
erywhere except at some surfaces, curves or points in B. No new ideas are involved in
the proof. Let us sketch it. The triple integral can be approximated by Riemann sums.
Taking tags of the form (x∗i , y

∗
j , z
∗
k), we have

˚
R

f dV ≈
∑
i,j,k

f(x∗i , y
∗
j , z
∗
k)∆xi∆yj∆zk =

∑
i,j

(∑
k

f(x∗i , y
∗
j , z
∗
k)∆zk

)
∆xi∆yj .

When ‖P‖ is very small, ∆xi,∆yj,∆zk are also very small,

∑
i,j

(∑
k

f(x∗i , y
∗
j , z
∗
k)∆zk

)
∆xi∆yj ≈

∑
i,j

ˆ f

e

f(x∗i , y
∗
j , z) dz ∆xi∆yj .

Introducing the function

h(x, y) =

ˆ f

e

f(x, y, z) dz ,

the term on the right becomes
∑

i,j h(x∗i , y
∗
j )∆xi∆yj which is a Riemann sum for the

function h. As ‖P‖ → 0, it tends to the integral¨
R

h(x, y) dA(x, y) ,

that is, ¨
R

(ˆ f

e

f(x, y, z) dz

)
dA(x, y) .
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A similar result holds when the order of x, y and z are interchanged.

For functions defined in a region Ω in space, we take a rectangular box B containing
Ω and define

˚
Ω

f(x, y, z) dV =

˚
B

f̃(x, y, z) dV ,

where f̃ is the trivial extension of f to the entire space (that is, setting f̃ = 0 outside
Ω). Whenever f is piecewise continuous in Ω, its extension f̃ is again a function of the
same type, hence the integral of f̃ over R is well-defined. Consequently, the integral of
f over Ω also makes sense according to the above definition. In particular, all piecewise
continuous functions in Ω is integrable.

For a region of the form (“type I”)

Ω = {(x, y, z) : f1(x, y) ≤ z ≤ f2(x, y), (x, y) ∈ D} ,

where D is a region in the plane, the analog of Theorem 1.8 becomes
˚

Ω

f(x, y, z) dV =

¨
D

ˆ f2(x,y)

f1(x,y)

f(x, y, z) dz dA(x, y) . (1.5)

Corresponding formulas when the role of z = fi(x, y) is replaced by y = gi(x, z) or
x = hi(y, z), i = 1, 2, hold.

When f is positive, the triple integral˚
Ω

f dV

gives the mass of Ω with density f . When f ≡ 1,

|Ω| ≡
˚

Ω

dV

is the volume of the region Ω.

Example 1.11 Evaluate ˚
Ω

xy dV

in two ways: dzdA(x, y) and dxdA(y, z) where Ω is the region bounded between x+ 2y+
3z = 1 and the coordinate planes in x, y, z ≥ 0.

The region Ω is a tetrahedron formed by the plane x+2y+3z = 1 and three coordinates
planes. By projecting the plane into the xy-plane, one has

Ω = {(x, y, z) : 0 ≤ z ≤ (1− x− 2y)/3, (x, y) ∈ D} ,
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where D is the triangle with vertices at (0, 0), (1, 0), (0, 1/2) in the xy-plane. By Fubini’s
Theorem,

˚
Ω

xy dV =

¨
D

ˆ (1−x−2y)/3

0

xy dz dA(x, y)

=
1

3

¨
D

xy(1− x− 2y) dA

=
1

3

ˆ 1

0

ˆ (1−x)/2

0

xy dydx

=
1

144
.

Next, Ω projects to the triangle ∆ with vertices at (0, 0), (1/2, 0), (0, 1/3) in the yz-
plane. We have

Ω = {(x, y, z) : 0 ≤ x ≤ 1− 2y − 3z, (y, z) ∈ ∆} .

˚
Ω

xy dV =

¨
∆

ˆ 1−2y−3z

0

xy dx dA(y, z)

=

¨
∆

1

2
(1− 2y − 3z)2 dA

=

ˆ 1/2

0

ˆ (1−2y)/3

0

1

2
(1− 2y − 3z)2 dz dy

=
1

144
.

Example 1.12 Express the triple integral of a function f over the tetrahedron formed
by the vertices (0, 0, 0), (0, 1, 0), (1, 1, 0) and (0, 1, 1) by an iterated integral in dzdydx.

The tetrahedron T has four faces given by triangles lying in the xy-plane, yz-plane,
the plane y = 1 and the plane x − y + z = 0. See the figure in pg 912, Text. When
projecting into the xy-plane, it is described by f1(x, y) ≡ 0 ≤ z ≤ f2(x, y) ≡ y − z over
the triangle ∆ with vertices at (0, 0), (0, 1) and (1, 1). Therefore,

˚
T

f(x, y, z) dV =

¨
∆

ˆ y−x

0

f(x, y, z) dzdA(x, y) =

ˆ 1

0

ˆ y

0

ˆ y−x

0

f(x, y, z) dzdxdy .

We may also express the triple integral in other orders. For instance, we have
˚

T

f(x, y, z) dV =

ˆ 1

0

ˆ y

0

ˆ y−z

0

f(x, y, z) dxdzdy ,

and ˚
T

f(x, y, z) dV =

ˆ 1

0

ˆ 1−x

0

ˆ 1

x+z

f(x, y, z) dydzdx .
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When the projected region D can be expressed in polar coordinates, any point (x, y, z)
in Ω can be described in terms of (r, θ, z) where (x, y) = (r cos θ, r sin θ) ∈ D. The
description of (x, y, z) in terms of(r, θ, z) is called the cylindrical coordinates. When
D is of the form

{(r cos θ, r sin θ) : h1(θ) ≤ r ≤ h2(θ), θ ∈ [θ1, θ2]} ,

(1.5) becomes
˚

Ω

f dV =

ˆ θ2

θ1

ˆ h2(θ)

h1(θ)

ˆ f2(r cos θ,r sin θ)

f1(r cos θ,r sin θ)

f(r cos θ, r sin θ, z)r dz drdθ . (1.6)

Example 1.13 Find the volume of the region R bounded between z =
√
x2 + y2 and

x2 + y2 + z2 = 2.

These two graphs intersect at z = 1 and its projection to the xy-plane is the disk
x2 + y2 ≤ 1. Using cylindrical coordinates,

|R| =

˚
R

1 dV

=

ˆ 2π

0

ˆ 1

0

ˆ √2−r2

r

r dz drdθ

= 2π

ˆ 1

0

(
√

2− r2 − r)r dr

=
2
√

2

3
.

Another useful special coordinates is the spherical coordinates.

For each (x, y, z) in R3, we can find (ρ, ϕ, θ) ∈ [0,∞) × [0, π] × [0, 2π] such that x =
ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ. (ρ, ϕ, θ) is called the spherical coordinates of
(x, y, z). These formulas set up a mapping Φ from [0,∞)× [0, π]× [0, 2π] to R3. It is one-
to-one and onto R3 (with the origin removed) when restricted to (0,∞)× [0, π]× [0, 2π).

Let Ω1 and Ω be two regions in (ρ, ϕ, θ)-space and (x, y, z)-space respectively that
satisfy Φ(Ω1) = Ω. Given any function f in the (x, y, z)-space, f ◦ Φ becomes a function
in the (ρ, ϕ, θ)-space. The following formula holds:˚

Ω

f(x, y, z) dV =

˚
Ω1

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕdV (ρ, ϕ, θ) .

In applications, the region Ω is usually of the form:

Ω = {(x, y, z) : ρ1(ϕ, θ) ≤ ρ ≤ ρ2(ϕ, θ), (ϕ, θ) ∈ D },

for some region D. Then we have
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Theorem 1.14. For a continuous function f in Ω,

˚
Ω

f(x, y, z) dV =

¨
D

ˆ ρ2(ϕ,θ)

ρ1(ϕ,θ)

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕdρdA(ϕ, θ) .

(1.7)

We refer to the text book for a proof of this theorem. We will re-derive it in the next
chapter when we discuss the change of variables formula.

Example 1.14 Use spherical coordinates to find the volume of the circular cone whose
base radius is R and height h.

In rectangular coordinates, the solid cone is described as

Ω = {(x, y, z) :
h

R

√
x2 + y2 ≤ z ≤ h, x2 + y2 ≤ R2} .

In spherical coordinates, it is

Ω̃ = {(ρ, ϕ, θ) : 0 ≤ ρ ≤ ρ2(ϕ, θ), 0 ≤ ϕ ≤ ϕ0, 0 ≤ θ ≤ 2π }.

Here z = h turns into ρ2 cosϕ = h, that is,

ρ2(ϕ, θ) =
h

cosϕ
.

On the other hand, ϕ0, which is determined by the perpendicular triangle with sides R
and H, satisfies h tanϕ0 = R. Hence

ϕ0 = tan−1R/h.

Only rays from the original can hit z = h when ϕ ∈ [0, ϕ0]. Henceforth, the volume of
the circular cone is given by

|Ω| =

ˆ 2π

0

ˆ ϕ0

0

ˆ h/ cosϕ

0

1× ρ2 sinϕdρdϕdθ

= 2π

ˆ ϕ0

0

1

3

h3 sinϕ

cos3 ϕ
dϕ

=
1

3
πR2h .

Example 1.15 Express the integral

ˆ 3

0

ˆ √9−y2

0

ˆ √18−x2−y2

√
x2+y2

f(x, y, z) dzdxdy
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in cylindrical and spherical coordinates respectively.

This is an ice-cream cone given by

{(x, y, z) :
√
x2 + y2 ≤ z ≤

√
18− x2 − y2, 0 ≤ r ≤ 3, 0 ≤ θ ≤ 2π},

in cylindrical coordinates. Therefore, this integral is equal to

ˆ 2π

0

ˆ 3

0

ˆ √18−r2

r

f(r cos θ, r sin θ, z)r dzdrdθ .

Next, in spherical coordinates, the ice-cream is described by

{(x, y, z) : 0 ≤ ρ ≤ ρ2, 0 ≤ ϕ ≤ ϕ0, 0 ≤ θ ≤ 2π }.

Here ρ2 describes the surface of the ice-cream which is given by ρ2 =
√

18. On the other
hand, x2+y2 = 18−x2−y2 implies x2+y2 = 9. That is, the circular cone and the spherical
intersect at a disk of radius of 3 centered at the origin. The angle ϕ0 is determined from
the perpendicular triangle with sides 3 and z = 3, hence ϕ0 = π/4. Our integral is equal
ton ˆ 2π

0

ˆ π/4

0

ˆ √18

0

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕdρdϕdθ ,

in spherical coordinates.

Example 1.16 Express the triple integral of a function f over (a) the region which is
bounded between z = 1, z = 0 and x2 + y2 + z2 = 4 and (b) the region which is between
the sphere and the plane z = 1 in spherical coordinates.

The sphere x2 + y2 + z2 = 4 and z = 1 intersects at a circle which is projected down
to the xy-plane as x2 + y2 = 4 − 1 = 3. Any ray of ϕ ∈ [0, ϕ0], ϕ0 = sin−1

√
3/2 = π/3,

hits the plane z = 1, that is, ρ = 1/ cosϕ. On the other hand, any ray of ϕ ∈ [π/3, π/2]
hits the sphere ρ = 2. Therefore, the triple integral is the sum of two integrals given by

˚
Ω

f dV =

ˆ 2π

0

ˆ π/2

π/3

ˆ 2

0

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕdρdϕdθ

+

ˆ 2π

0

ˆ π/3

0

ˆ 1/ cosϕ

0

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕdρdϕdθ .

Next, observe every ray from the origin hits the plane z = 1 and then the sphere ρ = 2
when ϕ ∈ [0, π/3] and none otherwise. The triple integral should be

ˆ 2π

0

ˆ π/3

0

ˆ 2

1/ cosϕ

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕdρdϕdθ .
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1.9 A Variant Of Fubini’s Theorem

In the derivation of the formula in Theorem 1.13, if we put the bracket differently, we will
have

˚
B

f dV ≈
∑
i,j,k

f(x∗i , y
∗
j , z
∗
k)∆xi∆yj∆zk =

∑
k

(∑
i,j

f(x∗i , y
∗
j , z
∗
k)∆xi∆yj

)
∆zk .

When ‖P‖ is very small, ∆xi,∆yj,∆zk are also very small,

∑
k

(∑
i,j

f(x∗i , y
∗
j , z
∗
k)∆xi∆yj

)
∆zk ≈

∑
k

¨
R

f(x, y, z∗)∆zk ,

where R = [a, b]× [c, d]. Letting ‖P‖ → 0, we get

˚
B

f dV =

ˆ f

e

(¨
R

f(x, y, z)dz

)
dA(x, y) dz .

When f is defined in Ω, let

Ω(z) = {(x, y) : (x, y, z) ∈ Ω}

the z-cross section of Ω. Suppose that Ω(z) is a region for each z ∈ [e, f ] and becomes
empty elsewhere. We have the formula

˚
Ω

f dV =

ˆ f

e

¨
Ω(z)

f(x, y, z) dA(x, y) dz . (1.8)

Taking f ≡ 1, the volume of Ω can be expressed as an integral of the area of its cross
sections:

|Ω| =
ˆ f

e

|Ω(z)| dz . (1.9)

Example 1.17 Use formula (1.19) to find the volume of the ball of radius R.

The upper half ball is the graph of z =
√
R2 − x2 − y2 over the unit disk. The

cross section of the half ball at height z ∈ [0, R] is a disk of radius
√
R2 − z2. Hence

|R(z)| = π(R2 − z2). By (1.19), the volume of the half ball is

ˆ R

0

π(R2 − z2) dz = π(R2z − z3

3
)
∣∣∣R
0

=
2

3
πR3 .

Therefore, the volume of the ball is equal to 4πR3/3.
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Example 1.18 Find the volume of the cone whose vertex is (0, 0, h) and base is a region
D in the xy-plane.

By proportion, a line of length R on the xy-plane and the length x of its corresponding
line in the xy-plane at z satisfy

h− z
h

=
x

R
,

that is, x = (h − z)/h × R. Therefore, the area of the cross section of the cone at z is
equal to

(h− z)2

h2
|D| .

(R2 corresponds to the area |D|.) The volume of the cone is

ˆ h

0

(h− z)2

h2
|D| dz =

1

3
|D|h .

Let us work out a four dimensional example by “analog thinking”.

Example 1.17 Show the volume of the ball {(x, y, z, w) : x2 + y2 + z2 +w2 ≤ r2} in R4

is given by π2r4/2.

It suffices to calculate the volume for the upper half ball. For each w ∈ [0, r], the cross
section B(w) is a three dimensional ball of radius

√
r2 − w2. Therefore, the volume of the

ball is equal to

2

ˆ r

0

4π

3
(r2 − w2)3/2 dw = 2

4π

3
r4

ˆ π/2

0

cos4 θ dθ

=
1

2
π2r4 .

1.10 A Characterization Of Riemann Integral

This section is for optional reading.

From the view point of an analyst, the interpretation of integrals as area is not satis-
fying, let alone the physical point of view such as mass and centroid. Analysts would like
to understand Riemann integral (in all dimensions) from the view of point of analysis.
Here we present a theorem in this direction.

In the following we let V be the real vector space consisting of all piecewise continuous
functions which vanish outside some bounded set in the plane. We will work on this setting
for simplicity. You will see the same ideas also work in any dimension n ≥ 2.

Theorem 1.15. Let T be a map from V to R satisfying the following properties:
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(a) (Linearity) T is linear.

(b) (Positivity preserving) T (f) ≥ 0 provided f ∈ V is nonnegative.

(c) (Translation invariant) T (f) = T (f ′) where f ′ is a translate of f .

(d) (Normalization) T (χR0) = 1 where R0 = (0, 1)× (0, 1).

Then

T (f) =

¨
R

f dA

for all f ∈ V .

f ′ is a translate of f if f ′(p) = f(p+ p0) for some p0 ∈ R2.

Proof. We sketch the proof as follows. Step 1. Divide R0 into n many subsquares
where a typical one is (0, 1/n)× (0, 1/n) and denote them by Rij. All Rij are translates
of the typical one. By translational invariance, all T (χRij

) are equal. Therefore, from
∪i,jRij ⊂ R0 and positivity preserving we get

n2T (χ(0,1/n)2) ≤
∑
i,j

T (χRij
) ≤ T (χR0) = 1 ,

which implies, together with translational invariance,

T (χS) ≤ 1/n2 ,

for any square S of the form (a, a+ 1/n)× (b, b+ 1/n).

Step 2. For any horizontal line segment L, T (χL) = 0. WLOG assume L is a natural
number. We can fully cover L by 2nL many squares Sk of side length 1/n. From L ⊂ ∪kSk
we get χL ≤

∑
k χSk

, so

T (χL) ≤ 2nL× T (χS1) ≤ 2L/n→ 0 , as n→∞.

Hence T (χL) = 0. The same result holds for vertical line segments.

Step 3. T (χS) = 1/n2 where S is a square of side 1/n, including or excluding its boundary
points. This follows from combining Step 1 and Step 2 since the boundary are horizontal
or vertical lines.

Step 4. Let R(a, b) be a rectangle of length a and height b. I leave it as an exercise to
show T (χR(a,b)) = ab. Show this for a, b rational numbers first and then for irrational
numbers.
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Step 5. Let f be a continuous function vanishing outside some rectangle R. Let P be a
partition on R into Rij. Let mij and Mij be the minimum and maximum of f over Rij

respectively. From f ≤
∑

i,jMijχRij
we deduce

T (f) ≤ T (
∑
i,j

MijχRij
) =

∑
i,j

Mij|Rij| .

As ‖P‖ → 0, we get

T (f) ≤
¨
R

f dA .

On the other hand,
∑

i,jmijχR′ij ≤ f where R′ij is the subrectangle without counting in

the boundary points. Then
∑

i,jmij|Rij| ≤ T (f). Letting ‖P‖ → 0, we get

¨
R

f dA ≤ T (f) .

We have proved the theorem for continuous functions. The general case can be estab-
lished via an approximation argument.


